

LA-UR-19-21428

Approved for public release; distribution is unlimited.

Implicit, manifold-preserving numerical representations and solvers for multiscale kinetic simulations of plasmas Title:

Author(s): Chacon, Luis

Chen, Guangye Taitano, William Simakov, Andrei N. Barnes, Daniel C.

Intended for: Web

Issued: 2019-02-21

EST.1943

Implicit, manifold-preserving numerical representations and solvers for multiscale kinetic simulations of plasmas

Courant Institute Colloquium, NYU Feb. 11th, 2019

Luis Chacón

G. Chen

D. C. Barnes

W. Taitano

A. Simakov

Agenda

Feb. 11th, 2019

Courant Institute Colloquium

- Collisionless plasmas: conservative, implicit particle-in-cell algorithms
- Collisional plasmas: conservative, implicit, adaptive Vlasov-Fokker-Planck algorithms for ICF applications

Manifold-preserving algorithms for multiscale kinetic simulations

- ➤ High-fidelity simulation of kinetic multiscale problems require solving the kinetic transport equation, e.g.:
 - Boltzmann (rarefied gas dynamics, radiation transport)
- **►Numerical challenges** of kinetic descriptions are many:
 - → High dimensional (3D+3V+time), highly nonlinear, exceeding multiscale
 - Cannot afford to run fully resolved in time or space, even with most powerful supercomputers
 - Need to constrain numerical errors as much as possible
- ➤ Manifold-preserving discrete algorithms control numerical error by preserving constraints and asymptotic properties of the continuum problem, e.g., conservation laws. They facilitate:
 - Asymptotic well-posedness
 - *→ Discrete* model nesting (e.g., Boltzmann → Navier-Stokes → Euler)
 - → Avoiding long-term manifold drift [O(1) errors!]
- **►Implicit timestepping is needed for efficiency.**
 - Model-nesting can be effectively used for algorithmic acceleration (e.g., moment-based acceleration, aka High-Order/Low-Order, micro-macro, etc).
- ➤ We have applied these ideas to rarefied gases, radiation, and plasmas.
- ➤ We will focus on plasmas throughout this talk.

First-principles simulation of plasmas: The Vlasov-Fokker-Planck-Maxwell system

- ► A fully ionized plasma: soup of ions, electrons, coupled by EM fields
- \triangleright Probability distribution function f_s described by Vlasov-Fokker-Planck eq.

$$\partial_t f_s + \mathbf{v} \cdot \nabla f_s + \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_v f_s = \left(\frac{\partial f}{\partial t}\right)_c$$
Fokker-Planck-Landau

coupled with Maxwell equations (or Darwin, ES, etc):

$$\partial_{t}\mathbf{B} + \nabla \times \mathbf{E} = 0$$

$$-\mu_{0}\epsilon_{0}\partial_{t}\mathbf{E} + \nabla \times \mathbf{B} = \mu_{0}\mathbf{j}$$

$$\nabla \cdot \mathbf{B} = 0$$

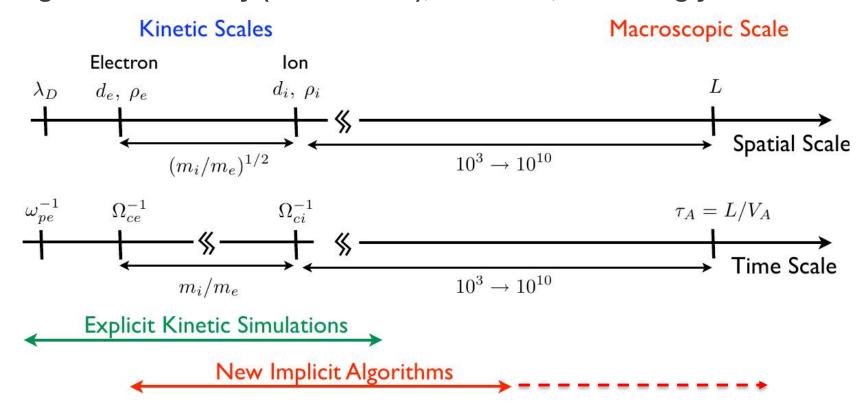
$$\nabla \cdot \mathbf{E} = \epsilon_{0}$$

$$\mathbf{j} = \sum_{s} \int q\mathbf{v}f_{s}d\mathbf{v} ; \quad \rho = \sum_{s} \int qf_{s}d\mathbf{v}$$

- ► Manifold constraints: positivity of f_s , strict conservation of charge (mass), momentum, and energy, H-theorem
- ➤ Very rich manifold asymptotics: quasineutrality, ambipolarity, multi-fluid, resistive MHD, ideal MHD

Challenges of first-principles kinetic plasma simulations

► High dimensionality (3D+3V+time), nonlinear, exceedingly multiscale



- ➤ Goal: integrate electron-ion-field kinetic system on engineering time and length scales while capturing kinetic effects.
 - Need asymptotic-preserving implicit methods, adaptivity in phase space, strict conservation properties

Manifold-preserving implicit Lagrangian (PIC) methods for collisionless plasmas

Vlasov-Maxwell equation for collisionless plasmas

►Vlasov equation

$$\partial_t f_s + \mathbf{v} \cdot \nabla f_s + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla f_s = 0$$

coupled with Maxwell equations

$$\partial_{t}\mathbf{B} + \nabla \times \mathbf{E} = 0$$

$$-\mu_{0}\epsilon_{0}\partial_{t}\mathbf{E} + \nabla \times \mathbf{B} = \mu_{0}\mathbf{j}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_{0}}$$

where:

$$\mathbf{j} = \sum_{s} \int q\mathbf{v} f_{s} d\mathbf{v}$$
 ; $\rho = \sum_{s} \int qf d\mathbf{v}$

➤ Vlasov equation is a singular limit of VFP

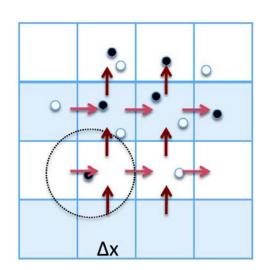
- \Rightarrow Features an infinite number of invariants (any function of f_s)
- However, only mass, momentum, and energy survive with arbitrarily infrequent collisions

Lagrangian (particle-in-cell, PIC) discretization of the Vlasov-Maxwell system

➤ Lagrangian solution by the method of characteristics:

$$f(\mathbf{x}, \mathbf{v}, t) = f_0 \left(\mathbf{x} - \int_0^t dt \mathbf{v}, \mathbf{v} - \frac{1}{m} \int_0^t dt \mathbf{F} \right) ; \mathbf{x}(t = 0) = \mathbf{x}_0 ; \mathbf{v}(t = 0) = \mathbf{v}_0$$

- ➤ PIC approach follows characteristics employing macroparticles (volumes in phase space)
- ➤ Maxwell's equations are usually solved by finite-difference time-domain methods.



$$f(\mathbf{x}, \mathbf{v}, t) = \sum_{p} \delta(\mathbf{x} - \mathbf{x}_{p}) \delta(\mathbf{v} - \mathbf{v}_{p})$$

$$\dot{\mathbf{x}}_{p} = \mathbf{v}_{p}$$

$$\dot{\mathbf{v}}_{p} = \frac{q_{p}}{m_{p}} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

$$\nabla \cdot \mathbf{B} = 0$$

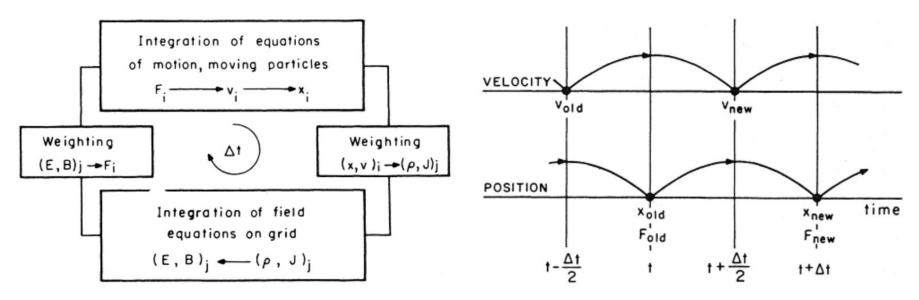
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_{0}}$$

$$\delta(\mathbf{x} - \mathbf{x}_p) \longrightarrow S(\mathbf{x} - \mathbf{x}_p)$$
; $E_p = \sum_i E_i S(x_i - x_p)$; $j_i = \sum_p j_p S(x_i - x_p)$

Los Alamos National Laboratory

Classical PIC algorithm is explicit (i.e., not multiscale, not conservative)

Classical explicit PIC: "leap-frogs" particle positions and velocities, field-solve at position update:



- ➤ Implementation is straightforward, but...
- ➤ Performance limitations:
 - ightharpoonup CFL-type instability: min($\omega_{pe}\Delta t < 1$, $c\Delta t < \Delta x$). Minimum temporal resolution
 - \Rightarrow Finite-grid instability: $\Delta x < \lambda_{Debye}$. Minimum spatial resolution
 - Memory bounded: challenging for efficient use of modern computer architectures.
- ➤ Accuracy limitations:
 - Lack of energy conservation, problematic for long-time-scale simulations
- ➤ To remove the stability/accuracy constraints of explicit methods, we consider implicit methods.

What about implicit PIC?

► Exploration of implicit PIC started in the 1980s

- Implicit moment method¹
- ⇒ Direct implicit method²

► Early approaches used linearized, semi-implicit formulations:

- Lack of nonlinear convergence
- → Particle orbit accuracy (particle and fields integrated in lock-step)
- Inconsistencies between particles and moments
- □ Inaccuracies! → Plasma self-heating/cooling³

➤Our approach: nonlinear implicit PIC

- Enforcing nonlinear convergence; consistency between particles, moments, and fields.
- Ensuring exact global energy conservation and local charge conservation properties.
- Allowing adaptivity in both time and space without loss of the conservation properties.
- Allowing moment-based preconditioning to accelerate the iterative kinetic solver!
- 1. Mason, R. J. (1981), Brackbill, J. U., and Forslund, D. W. (1982)
- 2. Friedman, A., Langdon, A. B. and Cohen, B. I.(1981)
- 3. Cohen, B. I., Langdon, A. B., Hewett, D. W., and Procassini, R. J. (1989)

Fully implicit PIC: 1D electrostatic PIC

Chen et al, JCP 2011, 2012, 2013; Taitano et al, SISC (2013)

Fully implicit 1D electrostatic PIC formulation

➤ A fully implicit formulation couples particles and fields non-trivially (integro-differential PDE):

$$\frac{f^{n+1} - f^n}{\Delta t} + \mathbf{v} \cdot \nabla \frac{f^{n+1} + f^n}{2} - \frac{q}{m} \nabla \frac{\Phi^{n+1} + \Phi^n}{2} \cdot \nabla_{\mathbf{v}} \frac{f^{n+1} + f^n}{2} = 0$$

$$\nabla^2 \Phi^{n+1} = \int d\mathbf{v} f^{n+1}(\mathbf{x}, \mathbf{v}, t)$$

- \blacktriangleright In PIC, f^{n+1} is sampled by a large collection of particles in phase space, $\{x, v\}_p^{n+1}$.
 - ightharpoonup There are N_p particles, each particle requiring $2 \times d$ equations (d odimensions),
 - \Rightarrow Field requires N_g equations, one per grid point.
- ➤ If implemented naively, an impractically large algebraic system of equations results:

$$\boxed{\mathbf{F}(\{\mathbf{x},\mathbf{v}\}_p^{n+1},\{\Phi^{n+1}\}_g)=0} \rightarrow \dim(\mathbf{F})=2dN_p+N_g$$

- → No current computing mainframe can afford the memory requirements
- Algorithmic issues are showstoppers (e.g., how to precondition it?)
- An alternative strategy exists: nonlinear elimination (particle enslavement)

Particle enslavement (nonlinear elimination)

- Full residual $\mathbf{F}(\{x,v\}_p,\{\Phi\}_g)=0$ is impractical to implement
- ➤ Alternative: nonlinearly eliminate particle quantities so that they are not dependent variables:
 - Formally, particle equations of motion are functionals of the electrostatic potential:

$$x_p^{n+1} = x_p[\Phi^{n+1}] ; v_p^{n+1} = v_p[\Phi^{n+1}]$$

$$\mathbf{F}(\mathbf{x}_p^{n+1}, \mathbf{v}_p^{n+1}, \Phi^{n+1}) = \mathbf{F}(\mathbf{x}[\Phi^{n+1}], \mathbf{v}[\Phi^{n+1}], \Phi^{n+1}) = \tilde{\mathbf{F}}(\Phi^{n+1})$$

Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only!

- Nonlinear solver storage requirements are dramatically decreased, making it tractable:
 - ightharpoonup Nonlinear solver storage requirements $\propto N_g$, comparable to a fluid simulation
 - → Particle quantities ⇒ auxiliary variables: only a single copy of particle population needs to be maintained in memory throughout the nonlinear iteration

Nonlinear solver: Jacobian-free Newton-Krylov

 \blacktriangleright After spatial and temporal discretization \Rightarrow a large set of nonlinear equations: $\mid F(x^{n+1}) = 0$

$$\int F(x^{n+1}) = 0$$

- Converging nonlinear couplings requires iteration
- We begin with Newton's linearization:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - J_k^{-1} \boldsymbol{F}(\boldsymbol{x}^k)$$

- Jacobian matrix inversion requires a linear solver \Rightarrow Krylov subspace methods (GMRES)
 - Only require matrix-vector products to proceed.
 - → Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form Jacobian matrix):

$$\left(\frac{\partial \mathbf{F}}{\partial \mathbf{x}}\right)_k \mathbf{y} = J_k \mathbf{y} = \lim_{\epsilon \to 0} \frac{\mathbf{F}(\mathbf{x}^k + \epsilon \mathbf{y}) - \mathbf{F}(\mathbf{x}^k)}{\epsilon}$$

Krylov methods can be easily preconditioned: $P_k^{-1} \sim J_k^{-1}$

$$J_k P_k^{-1} P_k \delta \mathbf{x} = -F_k$$

We will explore moment-based preconditioning strategies later in this talk.

An important detail: Vlasov-Poisson vs. Vlasov-Ampere

➤ Two equivalent formulations are possible:

1D Vlasov-Poisson (VP) 1D Vlasov-Ampère (VA) $\partial_t f + v \partial_x f + \frac{qE}{m} \partial_v f = 0$ $\partial_t f + v \partial_x f + \frac{qE}{m} \partial_v f = 0$ $\partial_x E = \frac{\rho}{\epsilon_0}$ $\epsilon_0 \partial_t E + j = \langle j \rangle$ Two systems are equivalent in continuum, but not in the discrete. ➤ Conventionally used in explicit PIC. Exact *local* charge conservation. Exact *local* charge conservation.

- ➤ Exact *global* momentum conservation.
- ➤ Unstable with orbit averaging in implicit context [Cohen and Freis, 1982].
- ➤ Exact *global* energy conservation.
- ➤ Suitable for orbit averaging.
- ➤ Can be extended to electromagnetic system in multi-D.

➤ We consider Vlasov-Ampere to derive discrete conservative formulation.

Los Alamos National Laboratory

Details of enslaved nonlinear residual evaluation

- \blacktriangleright The nonlinear residual formulation $\mathbf{F}(E^{n+1})$ based on Vlasov-Ampere formulation is as follows:
 - 1. Input E (given by JFNK iterative method)
 - 2. Move particles (i.e., find $x_p[E]$, $v_p[E]$ by solving equations of motion)
 - (a) Requires inner (local) nonlinear iteration: Picard (not stiff)
 - (b) Can be as complicated as we desire (substepping, adaptivity, etc)
 - 3. Compute moments (current)
 - 4. Form Vlasov-Ampere equation residual
 - 5 return
- ➤ Full implicitness enables exact global energy conservation! (CRITICAL)
- ➤ Because particle move is performed within function evaluation, we have much freedom.
- ➤ We can explore improvements in particle mover to ensure long-term accuracy!
 - Multi-rate integrators (ensures orbit accuracy)
 - Exact charge conservation strategy (a new charge-conserving particle mover)

Fully implicit discretization: Exact energy conservation

Fully implicit Crank-Nicolson time discretization:

$$\varepsilon_0 \frac{E_i^{n+1} - E_i^n}{\Delta t} + j_i^{n+1/2} - \langle j \rangle = 0;$$

$$\frac{x_p^{n+1} - x_p^n}{\Delta t} - v_p^{n+1/2} = 0;$$

$$\frac{v_p^{n+1} - v_p^n}{\Delta t} - \frac{q_p}{m_p} \sum_i E_i^{n+1/2} S(x_i - x_p^{n+1/2}) = 0;$$

$$j_i^{n+1/2} = \sum_p q_p v_p^{n+1/2} S(x_p^{n+1/2} - x_i).$$

C-N enforces energy conservation to numerical round-off:

$$\sum_{p} \frac{m_{p}}{2} (v_{p}^{n+1} + v_{p}^{n}) (v_{p}^{n+1} - v_{p}^{n}) = -\sum_{i} \varepsilon_{0} \frac{E_{i}^{n+1} - E_{i}^{n}}{\Delta t} \frac{E_{i}^{n+1} + E_{i}^{n}}{2} \Rightarrow \sum_{p} \frac{1}{2} m_{p} v_{p}^{2} + \sum_{i} \frac{1}{2} \varepsilon_{0} E_{i}^{2} = \text{const}$$

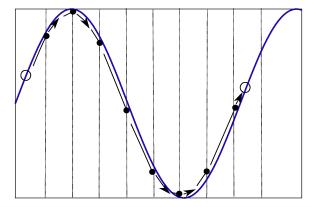
- No CFL condition.
- Robust against finite-grid instabilities
- Requires that particles and fields are nonlinearly converged.

Multirate particle integrator: Exact charge conservation

lacktriangle Multi-rate particle integrator: field time-scale $\Delta t \gg$ orbit time-scale Δau

Accurate orbit integration requires particle sub-stepping!

- \blacktriangleright Local charge conservation $\partial_t \rho + \nabla \cdot \mathbf{j} = 0$ is essential to ensure long-term accuracy.
 - Derived independently from both Vlasov and Maxwell equations: "glues" them together.
- ➤ B-spline interpolation ensures charge conservation within cell boundaries; broken when particles cross cell boundaries.
 - Standard strategy based on current redistribution when particle crosses boundary.4
 - Current redistribution breaks energy conservation. Need a new strategy.
- \blacktriangleright Particles stop at cell boundaries \Rightarrow exact charge conservation for B-splines with order \leq 2



$$\rho_{i+\frac{1}{2}} = \sum_{p} q_{p} \frac{S_{m}(x - x_{i+\frac{1}{2}})}{\Delta x}$$

$$j_{i} = \sum_{p} q_{p} v_{p} \frac{S_{m-1}(x - x_{i})}{\Delta x}$$

$$S'_{m}(x) = \frac{S_{m-1}(x + \frac{\Delta x}{2}) - S_{m-1}(x - \frac{\Delta x}{2})}{\Delta x}$$

$$\begin{cases} (m = 1, 2) \\ \Longrightarrow \end{cases} \left[\partial_{t} \rho + \nabla \cdot \mathbf{j} = 0 \right]_{i+\frac{1}{2}}^{n+\frac{1}{2}} = 0$$

Multirate particle integrator: Recover energy conservation

- ➤ Particle substepping breaks energy conservation.
- ➤ Energy conservation theorem can be recovered by orbit averaging Ampère's law:

$$\epsilon_0 \partial_t E + j = \langle j \rangle$$
 , $\frac{1}{\Delta t} \int_t^{t+\Delta t} d\tau [\cdots] \Rightarrow \epsilon_0 \frac{E^{n+1} - E^n}{\Delta t} + \bar{j} = \langle \bar{j} \rangle$

Orbit-averaged current is found as: [Cohen and Freis, 1982]

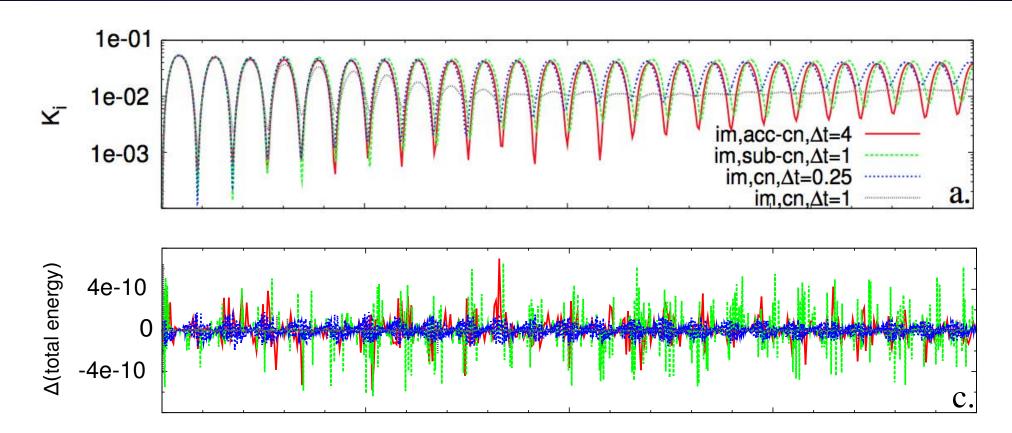
$$\bar{j} = rac{1}{\Delta t} \int_t^{t+\Delta t} d au \, j pprox rac{1}{\Delta t} \sum_p \sum_{
u=1}^{N_
u} q_p v_p S(x-x_p) \Delta au^
u$$

➤ With these definitions, exact energy conservation is recovered:

$$\sum_{p} \sum_{\nu} \frac{m_{p}}{2} (v_{p}^{\nu+1} + v_{p}^{\nu}) (v_{p}^{\nu+1} - v_{p}^{\nu}) = -\sum_{i} \epsilon_{0} \frac{E^{n+1} - E^{n}}{\Delta t} \frac{E_{i}^{n+1} + E_{i}^{n}}{2}$$

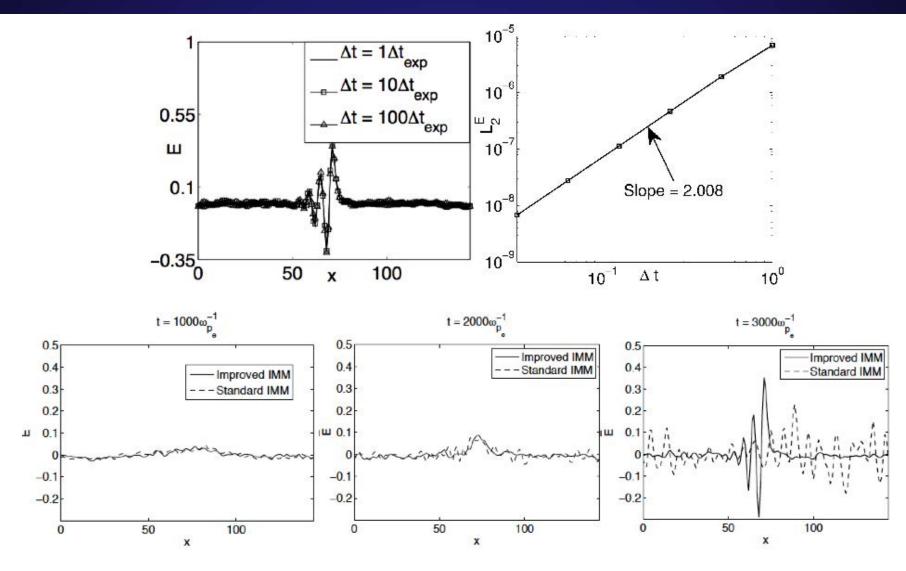
$$\Rightarrow \sum_{p} \frac{1}{2} m_p v_p^2 + \sum_{i} \frac{1}{2} \epsilon_0 E_i^2 = \text{const.}$$

Ion acoustic standing wave: Accuracy impact of manifold preservation



Ion acoustic oscillations
im=implicit
cn=Crank-Nicolson,
sub=fixed-substepping
acc=adaptive charge conserving.

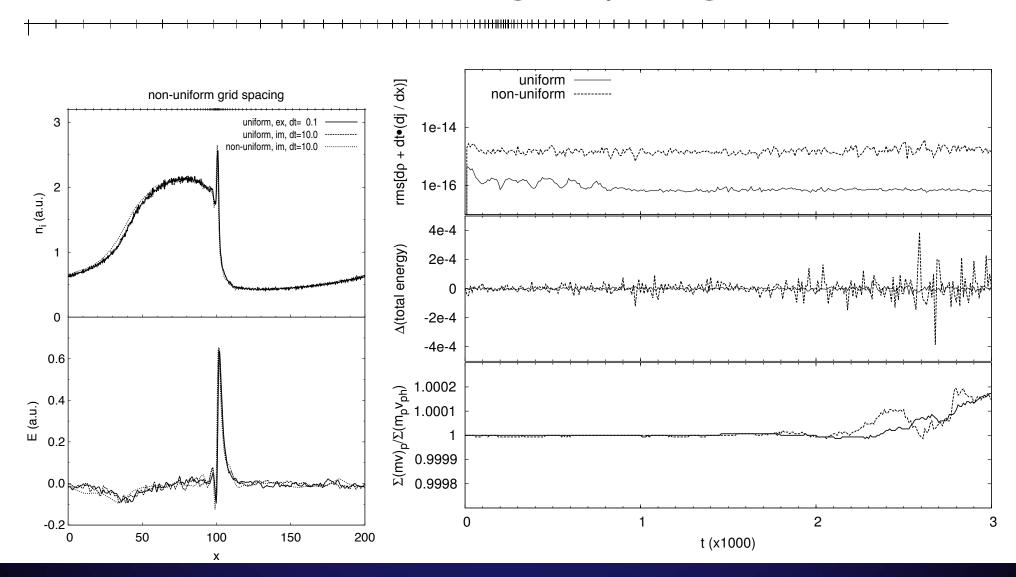
Ion acoustic shock wave: Accuracy impact of manifold preservation



 $^{^5}$ Taitano et al., SISC, 35 (2013)

Ion acoustic shock wave: Long-term accuracy on non-uniform mapped meshes

non-uniform grid spacing



Moment-based preconditioning

Chen et al, JCP 2014; CPC 2014, 2015

CPU gain potential of implicit PIC vs explicit PIC

➤ Back-of-the-envelope estimate of CPU gain:

$$CPU \sim \left(\frac{T}{\Delta t}\right) \left(\frac{L}{\Delta x}\right)^d n_p C^{solver} \;\; ; \;\; \frac{C^{imp}}{C^{ex}} \sim N_{FE} \frac{\Delta t_{imp}}{\Delta \tau_{imp}} \;\; ; \;\; \frac{CPU_{ex}}{CPU_{imp}} \sim \left(\frac{\Delta x_{imp}}{\Delta x_{ex}}\right)^d \frac{\Delta \tau_{imp}}{\Delta t_{ex}} \frac{1}{N_{FE}}$$

Using reasonable estimates:

$$\Delta au_{imp} \sim \min \left[0.1 rac{\Delta x_{imp}}{v_{th}}, \Delta t_{imp}
ight]$$
 $\Delta t_{imp} \sim 0.1 \omega_{pi}^{-1}$
 $\Delta t_{exp} \sim 0.1 \omega_{pe}^{-1}$
 $k\Delta x_{imp} \sim 0.2$
 $\Delta x_{ex} \sim \lambda_D$

$$\frac{CPU_{ex}}{CPU_{imp}} \sim \left(\frac{L}{\lambda_D}\right)^d \min\left[\frac{L}{\lambda_D}, \sqrt{\frac{m_i}{m_e}}\right] \frac{1}{N_{FE}}$$

- ➤ CPU speedup is:
 - Better for realistic mass ratios and increased dimensionality!
 - \Rightarrow Limited by solver performance N_{FE} (preconditioning!)

Moment-based acceleration of fully kinetic algorithm

- \triangleright Particle elimination \Rightarrow nonlinear residual is formulated in terms of fields/moments ONLY: $\mathbf{F}(E)$
- ➤ Within JFNK, preconditioner ONLY needs to provide field/moment update:

$$\delta E \approx -P^{-1}\mathbf{F}$$

Premise of acceleration: obtain δE from a fluid model using current particle distribution for closure.

We posit a fluid nonlinear model:

$$\partial_{t} n_{\alpha} = -\nabla \cdot \mathbf{\Gamma}_{\alpha}$$

$$m_{\alpha} \left[\partial_{t} \mathbf{\Gamma}_{\alpha} + \nabla \cdot \left(\frac{1}{n_{\alpha}} \mathbf{\Gamma}_{\alpha} \mathbf{\Gamma}_{\alpha} \right) \right] = q_{\alpha} n_{\alpha} \mathbf{E} + \nabla \cdot \left(n_{\alpha} \left(\frac{\mathbf{\Pi}_{\alpha}}{n_{\alpha}} \right)_{p} \right)$$

$$\epsilon_{0} \partial_{t} \mathbf{E} = \sum_{\alpha} q_{\alpha} \mathbf{\Gamma}_{\alpha}$$

Moment-based acceleration of fully kinetic alg. (cont.)

➤ We formulate *approximate* linearized fluid equations (neglect linear temperature response):

$$\frac{\delta n_{\alpha}}{\Delta t} = -\nabla \cdot \delta \Gamma_{\alpha}$$

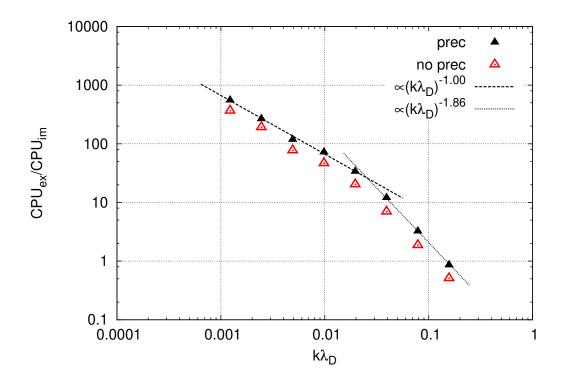
$$m_{\alpha} \frac{\delta \Gamma_{\alpha}}{\Delta t} \approx q_{\alpha} (\delta n_{\alpha} \mathbf{E} + n_{\alpha,p} \delta \mathbf{E}) + \nabla \cdot \left(\left(\frac{\mathbf{\Pi}_{\alpha}}{n_{\alpha}} \right)_{p} \delta n_{\alpha} \right)$$

$$\epsilon_{0} \delta \mathbf{E} = \Delta t \left[\sum_{\alpha} q_{\alpha} \delta \Gamma_{\alpha} - \mathbf{F}(\mathbf{E}) \right]$$

 δE can be obtained from Newton state **E**, Newton residual **F**(**E**), and particle closures $\Pi_{\alpha,p}$ and $n_{\alpha,p}$

Moment preconditioner performance

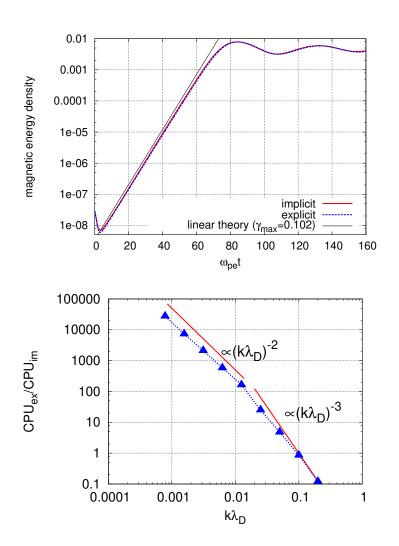
$$\frac{CPU_{ex}}{CPU_{imp}} \sim \left(\frac{L}{\lambda_D}\right)^d \frac{1}{N_{FE}} \min \left[\frac{L}{\lambda_D}, \sqrt{\frac{m_i}{m_e}}\right]$$

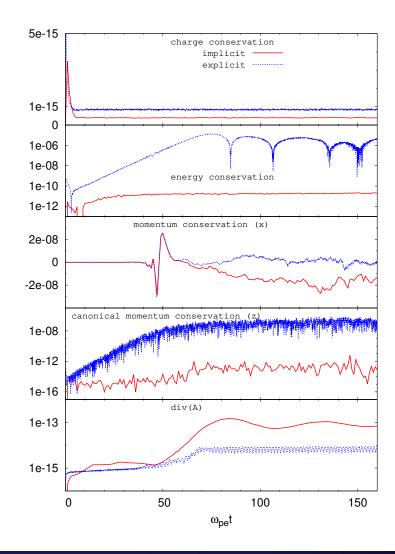


Transition occurs at $k\lambda_D\sim\sqrt{rac{m_e}{m_i}}\sim 0.025$, as predicted

Extension to multi-D electromagnetic PIC: conservation properties (2D Weibel)

$$m_i/m_e = 1836$$
, $T_{e\perp}/T_{e\parallel} = 9$, N_{pc} =2000, $L = \pi d_e \times \pi d_e$, $N_g = 32 \times 32$





Extension to multi-D electromagnetic PIC: Preconditioner performance (2D Weibel)

$$L_x imes L_y = 22 imes 22 \; (d_e^2)$$
, $N_{pc} = 200$, $\Delta t = 0.1 \omega_{pi}^{-1}$

$$N_x \times N_y = 128 \times 128$$

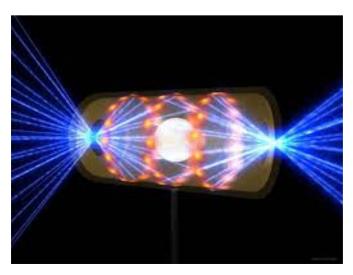
m_i/m_e	no preconditioner		with preconditioner	
	Newton	GMRES	Newton	GMRES
25	5.8	192.5	3	0
100	5.7	188.8	3	0
1836	7.7	237.8	4	2.8

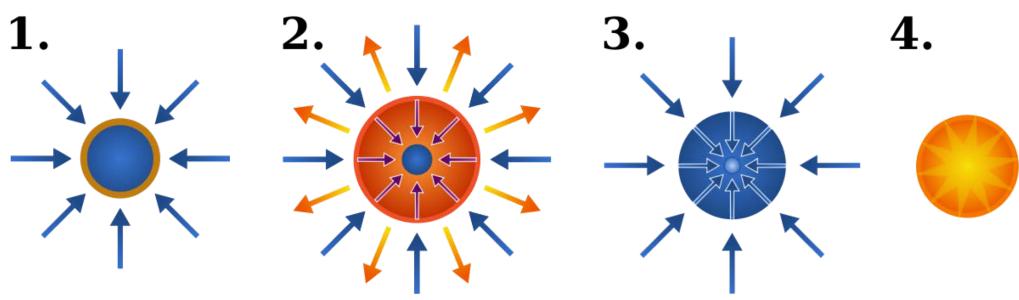
$$m_i/m_e = 1836$$

$N_x \times N_y$	no preconditioner		with preconditioner	
	Newton	GMRES	Newton	GMRES
16 × 16	3.7	20	3	0.9
32×32	4	38.5	3	0.9
64×64	4.3	79.9	3	0.2

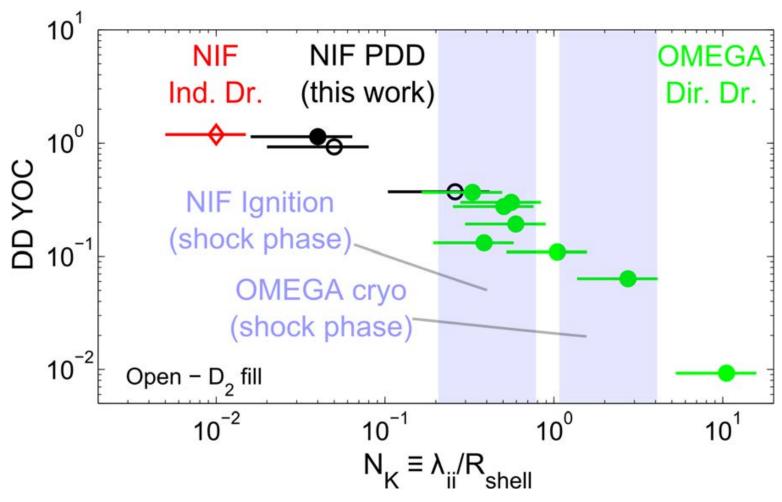
Manifold-preserving adaptive, implicit Eulerian methods for collisional plasmas

Motivation: Inertial Confinement Fusion (ICF)





Motivation: Kinetic effects in ICF are important



From Rosenberg et al., PoP, 21 (2014)

High-fidelity ICF simulations require a kinetic treatment

➤ Vlasov-Fokker-Planck (Rosenbluth form; equivalent to Landau form) is the model of choice for weakly coupled plasmas

$$\frac{Df_{i}}{Dt} \equiv \frac{\partial f_{i}}{\partial t} + \vec{v} \cdot \nabla f_{i} + \vec{a}_{i} \cdot \nabla_{v} f_{i} = \sum_{j} C_{ij} (f_{i}, f_{j})$$

$$C_{ij} (f_{i}, f_{j}) = \Gamma_{ij} \nabla_{v} \cdot \begin{bmatrix} D_{j} \end{bmatrix} \nabla_{v} f_{i} - \frac{m_{i}}{m_{j}} A_{j} f_{i}]$$

$$D_{j} = \nabla_{v} \nabla_{v} G_{j} \qquad A_{j} = \nabla_{v} H_{j}$$

$$\nabla_{v}^{2} H_{j} (\vec{v}) = -8\pi f_{j} (\vec{v})$$

$$\nabla_{v}^{2} G_{j} (\vec{v}) = H_{j} (\vec{v})$$

+ Maxwell's equations...

➤ VFP manifold: positivity, conservation of charge, momentum, and energy, H-theorem (entropy increases or stays constant)

The iFP Vlasov-Fokker-Planck code

Taitano et al, JCP 2015, 2016, 2017, 2018

A multiscale VFP solver for ICF applications

- ➤ Consider 1D-2V geometries (planar, spherical symmetry)
- **➤**Consider suitable asymptotic limits for Maxwell equations:
 - \Rightarrow Electrostatic approximation (exact in 1D spherical, $\beta \sim 10^3$ -10⁴ in Omega)
 - \Rightarrow Quasineutrality: $\rho = 0$
 - \Rightarrow Ambipolarity: j = 0 (in 1D)
 - ⇒ Eliminates plasma frequency, Debye length, and charge separation effects
 (this is OK for our timescales)

➤Consider fluid electrons:

- Massless electrons (regular limit)
- Eliminates non-local heat transport effects (drawback)
- ⇒ Interim approximation (ambipolarity can be imposed with kinetic e)

▶lons remain fully kinetic, allow for multiple species

Model equations: fully kinetic ions + fluid electrons

Vlasov-Fokker-Planck for ion species

Fluid electrons

$$\frac{3}{2}\partial_t (n_e T_e) + \frac{5}{2}\partial_x (u_e n_e T_e) - u_e \partial_x (n_e T_e) - \partial_x \kappa_e \partial_x T_e = \sum_{\alpha} C_{e\alpha}$$

$$n_e = -q_e^{-1} \sum_{N_s} q_{\alpha} n_{\alpha} \qquad u_e = -q_e^{-1} n_e^{-1} \sum_{\alpha \neq e}^{N_s} q_{\alpha} n_{\alpha} u_{\alpha}$$

Electric field model: e pressure, friction, thermal forces

$$E = -\frac{\nabla p_e + \sum_i \mathbf{F}_{ie}}{en_e} = -\frac{\nabla p_e}{en_e} - \frac{\alpha_0(Z_{eff})m_e}{e} \sum_i \nu_{ei} (\mathbf{V}_e - \mathbf{V}_i) - \frac{\beta_0(Z_{eff})}{e} \nabla T_e$$

Simakov and Molvig, PoP 21 (2014)

Algorithmic innovations of iFP

ightharpoonup Fully nonlinearly time-implicit ($\Delta t >> \tau_{col}$)

- Iterate solution to convergence
- Based on a nested-model HOLO solver, with optimal multigrid preconditioning

➤ Optimal, adaptive grid in phase space

- → Velocity space: normalize to thermal velocity and shift w/r/t flow velocity per ion species
- Radial coordinate: Moving mesh partial differential equation (MMPDE)

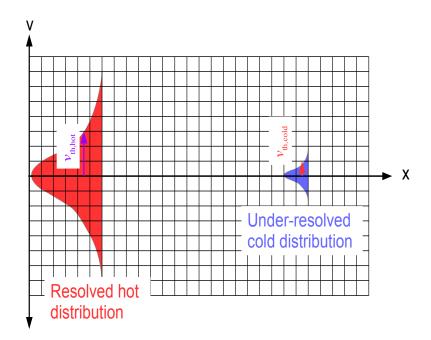
➤ Fully conservative (mass, momentum, and energy)

- Mesh motion in phase space built into model analytically, and then discretized (no remapping)
- Enslavement of error in conservation symmetry into discretization

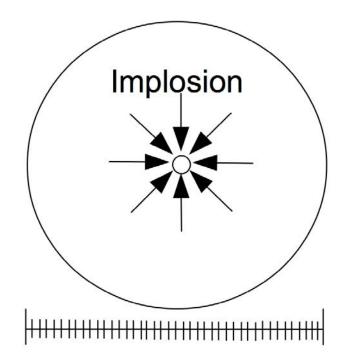
These strategies save > 14 orders of magnitude in computational complexity vs. "brute-force" algorithms (e.g. static uniform grid + explicit time-integration)

ICF adaptive meshing VFP needs

- ➤ Disparate temperatures during implosion dictate velocity resolution.
 - \Rightarrow $v_{th,max}$ determines L_v
 - $\Rightarrow v_{th,min}$ determines Δv



 Shock width and capsule size dictate physical space resolution



Brute-force VFP algorithms (uniform mesh, explicit timestepping) are impractical for ICF

➤ Mesh requirements:

- Intra species v_{th,max} /v_{th,min}~100
- \Rightarrow Inter species $(v_{th,\alpha}/v_{th,\beta})_{max} \sim 30$
- $\Rightarrow N_v \sim [10(v_{th,max}/v_{th,min})x(v_{th,\alpha}/v_{th,\beta})]^2 \sim 10^9$
- \Rightarrow N_r $\sim 10^3 10^4$
- \Rightarrow N=N_rN_v~10¹²-10¹³ unknowns in 1D2V!

►Timestep requirements:

$$\Rightarrow$$
 t_{sim}=10 ns

$$\Rightarrow$$
 N_t=10¹⁰ time steps

$$\Delta t_{exp}^{coll} \sim \frac{1}{10} \left(\frac{\Delta v}{v_{th}^{min}} \right)^2 \nu_{coll}^{-1} \sim 10^{-9} \, ns$$

➤ Beyond exascale (10¹⁸ FLOPS)!

Adaptive mesh with implicit timestepping makes problem tractable

- \blacktriangleright Mesh requirements: $\hat{v} = (v u_{\parallel})/v_{th}$
 - \Rightarrow v-space adaptivity with v_{th} normalization and u_{ll} shift, $N_v \sim 10^4 10^5$
 - → Moving mesh in physical space, N_r~10²
 - Second-order accurate phase-space discretization
 - \rightarrow N=N_vN_r~10⁶~10⁷ (vs. 10¹² with static mesh)

►Timestep requirements:

- → Optimal O(N_v) implicit nonlinear algorithms [Chacon, JCP, 157 (2000), Taitano et al., JCP, 297 (2015)]
- Second-order-accurate timestepping
- $\Rightarrow \Delta t_{imp} = \Delta t_{str} \sim 10^{-3} \text{ ns}$
- $\sim N_t \sim 10^3 10^4$ (vs. 10^{10} with explicit methods)
- ➤ Terascale-ready! (10¹² FLOPS, any reasonable cluster)

v_{th} adaptivity provides an enabling capability to simulate ICF plasmas

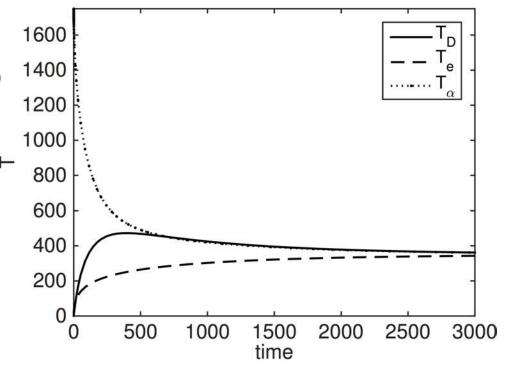
- **▶**D-e-α, 3 species thermalization problem
- ➤ Resolution with static grid:

$$N_v \sim 2 \left(\frac{v_{th,e,\infty}}{v_{th,D,0}}\right)^2 = 140000 \times 70000$$

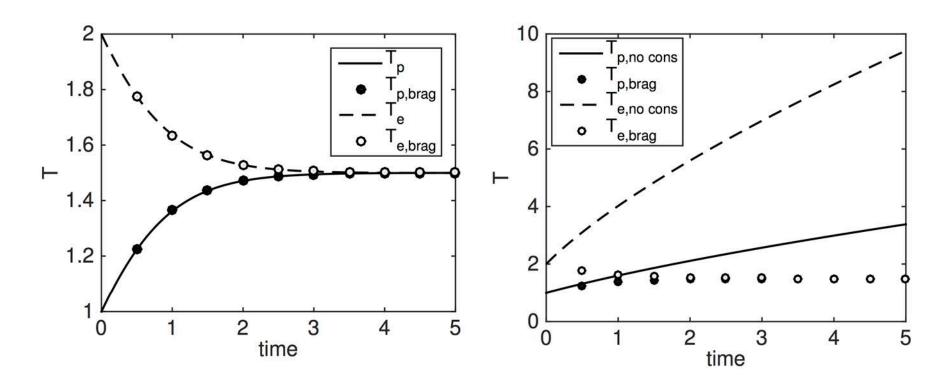
➤ Resolution with adaptivity and asymptotics:

$$N_v = 128 \times 64$$

➤ Mesh savings of



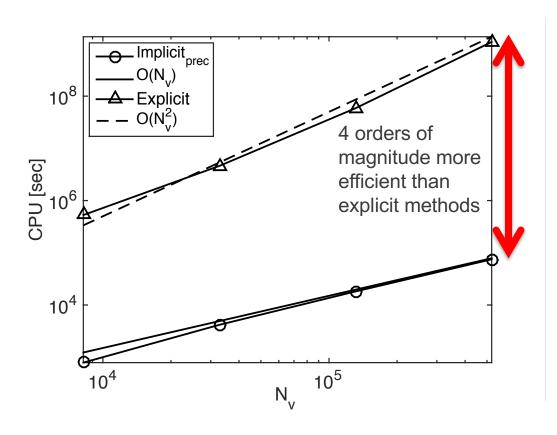
Manifold preservation is critical!

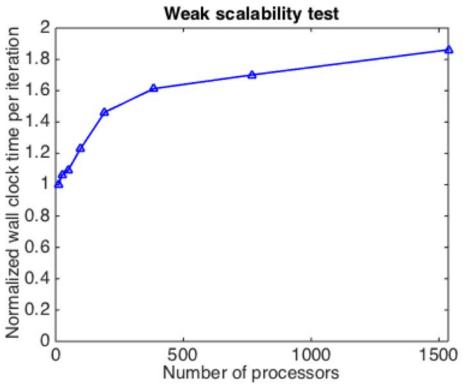


With energy conservation

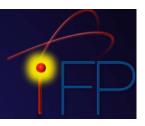
Without energy conservation

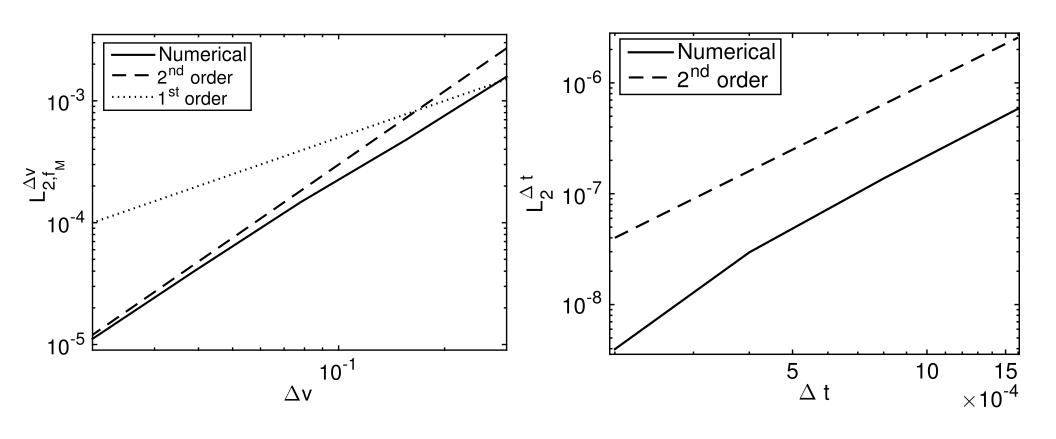
Implicit solver is very efficient, algorithmically and in parallel





Algorithm achieves design accuracy (2nd order in phase space and temporally)

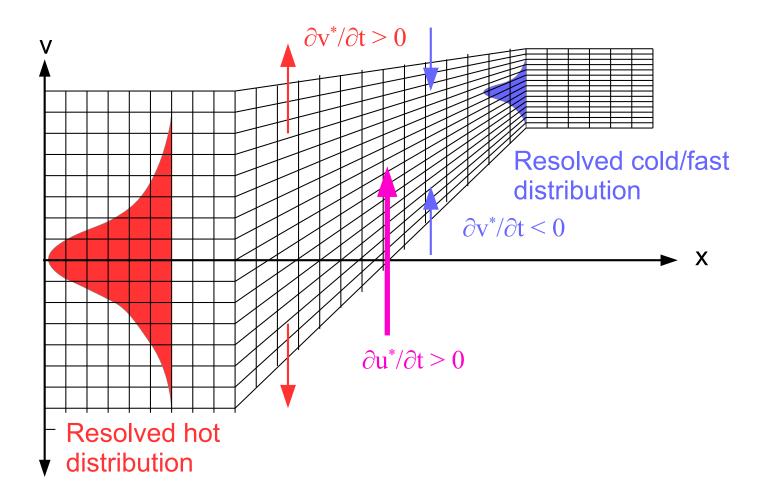




Phase-space mesh adaptivity strategy

Taitano et al, JCP 2016, 2017, 2018

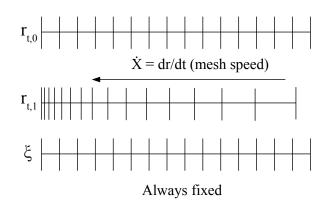
1D-2V Rosenbluth-VFP model: Adaptive velocity-space mesh

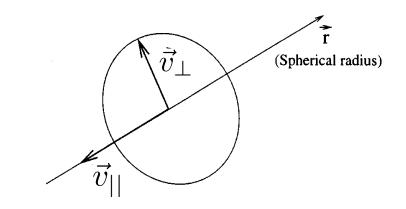


- ➤ V-space adaptivity allows optimal mesh resolution throughout the domain
- ➤ Analytical transformation introduces inertial terms

Representation and analytical coordinate transformation for v_{th} adaptive meshing

1D spherical (with logical mesh); 2D cylindrical geometry in velocity space





Coordinate transformation:

$$\widehat{v}_{||} \equiv rac{ec{v} \cdot \overrightarrow{\widehat{r}}}{v_{th,lpha}}, \ \widehat{v}_{\perp} \equiv rac{\sqrt{v^2 - v_{||}^2}}{v_{th,lpha}}$$

Jacobian of transformation:

$$\sqrt{g_v} (t, r, \widehat{v}_\perp) \equiv v_{th,\alpha}^3 (t, r) r^2 \widehat{v}_\perp$$
$$J_{r\xi} = \partial_{\xi} r$$

Coordinate transformation introduces inertial terms

►VRFP equation in transformed coordinates

$$\partial_{t}\left(\sqrt{g_{v}}J_{r\xi}f_{\alpha}\right) + \partial_{\xi}\left(\sqrt{g_{v}}v_{th,\alpha}\left[\widehat{v}_{||} - \widehat{\boldsymbol{f}}_{\alpha}\right]f_{\alpha}\right) + \\ \partial_{\widehat{v}_{||}}\left(J_{r\xi}\sqrt{g_{v}}\widehat{\boldsymbol{v}}_{||}f_{\alpha}\right) + \partial_{\widehat{v}_{\perp}}\left(J_{r\xi}\sqrt{g_{v}}\widehat{\boldsymbol{v}}_{\perp}f_{\alpha}\right) = J_{r\xi}\sqrt{g_{v}}\sum_{\beta}^{N_{s}}C_{\alpha\beta}\left(f_{\alpha}, f_{\beta}\right)$$

$$\widehat{\left[\widehat{\boldsymbol{v}}_{||}\right]} = \underbrace{\left[\frac{\widehat{\boldsymbol{v}}_{||}}{2} \left(\boldsymbol{v}_{th,\alpha}^{-2} \partial_t \boldsymbol{v}_{th,\alpha}^2 + J_{r\xi}^{-1} \left(\widehat{\boldsymbol{v}}_{||} - \widehat{\boldsymbol{x}}\right) \boldsymbol{v}_{th,\alpha}^{-1} \partial_\xi \boldsymbol{v}_{th,\alpha}^2\right)}\right] + \underbrace{\widehat{\boldsymbol{v}}_{\perp}^2 \boldsymbol{v}_{th,\alpha}}_{r} + \underbrace{\frac{q_{\alpha} E_{||}}{J_{r\xi} m_{\alpha} \boldsymbol{v}_{th,\alpha}}}_{r}$$

$$\widehat{\widehat{v}}_{\perp} = \left\{ \frac{\widehat{v}_{\perp}}{2} \left(v_{th,\alpha}^{-2} \partial_t v_{th,\alpha}^2 + J_{r\xi}^{-1} \left(\widehat{v}_{||} - \widehat{x} \right) v_{th,\alpha}^{-1} \partial_{\xi} v_{th,\alpha}^2 \right) \right\} \frac{\widehat{v}_{||} \widehat{v}_{\perp} v_{th,\alpha}}{r}$$

Collision operator:

Asymptotic treatment of interspecies collisions

Taitano et al, JCP 2016

Interspecies collisions present challenges with species-centric mesh adaption

► Adaptivity using v_{th} requires solving the interspecies collision problem: one needs to compute the potentials for species β on the mesh of species α

$$\widehat{C}_{\alpha\beta} = \frac{\Gamma_{\alpha\beta}}{v_{th,\beta}^3} \widehat{\nabla}_{v_{\alpha}} \cdot \left[\widehat{\nabla}_{v_{\alpha}} \widehat{\nabla}_{v_{\alpha}} \widehat{G}_{\alpha\beta} \cdot \widehat{\nabla}_{v_{\alpha}} \widehat{f}_{\alpha} - \frac{m_{\alpha}}{m_{\beta}} \widehat{f}_{\alpha} \widehat{\nabla}_{v_{\alpha}} \widehat{H}_{\alpha\beta} \right]$$

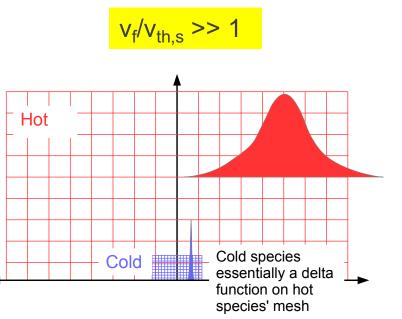
$$\widehat{\nabla}_{v_{\alpha}}^{2}\widehat{H}_{\alpha\beta} = -8\pi \underbrace{\widehat{f}_{\beta}\left(\widehat{v}_{\beta} = \widehat{v}_{\alpha}\frac{v_{th,\alpha}}{v_{th,\beta}}\right)}_{\widehat{G}_{v_{\alpha}}\widehat{G}_{\alpha\beta}} = \widehat{H}_{\alpha\beta}$$

$$\widehat{H}_{\alpha\beta} = H_{\beta}\frac{v_{th,\beta}^{3}}{v_{th,\alpha}^{2}}$$

$$\widehat{G}_{\alpha\beta} = G_{\beta}\frac{v_{th,\beta}^{3}}{v_{th,\alpha}^{4}}$$

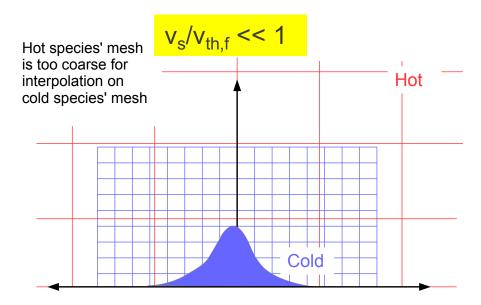
- **►**This transfer can be problematic:
 - Accuracy issues (when species have disparate thermal velocities)
 - ⇒ Efficiency issues: work scales as number of species squared O(N_s²)
- ➤ Asymptotic treatment solves both issues

Asymptotic Formulation of Interspecies Collisions



$$H_s = \frac{n_s}{v} + \frac{n_s \boldsymbol{V}_s \cdot \boldsymbol{v}}{v^3} + \cdots$$

$$G_s = n_s v - \frac{n_s \boldsymbol{V}_s \cdot \boldsymbol{v}}{v} + \boldsymbol{\nabla}_v \boldsymbol{\nabla}_v v : \left(\frac{1}{2} \int d^3 v' f_s' \boldsymbol{v}' \boldsymbol{v}'\right) + \cdots$$



$$H_{f} = \boldsymbol{v} \cdot \left(\int d^{3}v' f_{f}' \frac{\boldsymbol{v}'}{v'^{3}} \right) + \frac{1}{2}\boldsymbol{v}\boldsymbol{v} : \left[\int d^{3}v' f_{f}' \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right]$$

$$- \frac{1}{6}\boldsymbol{v}\boldsymbol{v}\boldsymbol{v} : \left[\int d^{3}v' f_{f}' \nabla_{v'} \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right]$$

$$+ \frac{1}{24}\boldsymbol{v}\boldsymbol{v}\boldsymbol{v}\boldsymbol{v} : \left[\int d^{3}v' f_{f}' \nabla_{v'} \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right] + \cdots$$

$$G_f = \frac{1}{2} \boldsymbol{v} \boldsymbol{v} : \left(\int d^3 v' \, f_f' \boldsymbol{\nabla}_{v'} \boldsymbol{\nabla}_{v'} v' \right) - \frac{1}{6} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v} : \left(\int d^3 v' \, f_f' \boldsymbol{\nabla}_{v'} \boldsymbol{\nabla}_{v'} \boldsymbol{\nabla}_{v'} v' \right) + \frac{1}{24} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v} : \left(\int d^3 v' \, f_f' \boldsymbol{\nabla}_{v'} \boldsymbol{\nabla}_{v'} \boldsymbol{\nabla}_{v'} \boldsymbol{\nabla}_{v'} v' \right) + \cdots$$

v_{th} adaptivity provides an enabling capability to simulate ICF plasmas

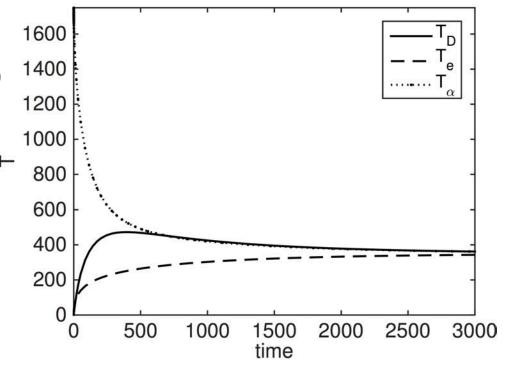
- **▶**D-e-α, 3 species thermalization problem
- ➤ Resolution with static grid:

$$N_v \sim 2 \left(\frac{v_{th,e,\infty}}{v_{th,D,0}}\right)^2 = 140000 \times 70000$$

➤ Resolution with adaptivity and asymptotics:

$$N_v = 128 \times 64$$

➤ Mesh savings of



Collision operator:Conservation and positivity

2V Rosenbluth-FP collision operator: conservation symmetries

➤ Conservation properties of FP collision operator result from symmetries:

$$C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_v \cdot \left[\vec{J}_{\alpha\beta,G} - \frac{m_{\alpha}}{m_{\beta}} \vec{J}_{\alpha\beta,H} \right]$$

Mass

$$\langle 1, C_{\alpha\beta} \rangle_{\vec{v}} = 0$$
 $\Rightarrow \left| \vec{J}_{\alpha\beta,G} - \vec{J}_{\alpha\beta,H} \right|_{\vec{\partial v}} = 0$

Momentum

$$m_{\alpha} \langle \vec{v}, C_{\alpha\beta} \rangle_{\vec{v}} = -m_{\beta} \langle \vec{v}, C_{\beta\alpha} \rangle_{\vec{v}} \implies \left[\langle 1, J_{\alpha\beta,G}^{\parallel} - J_{\beta\alpha,H}^{\parallel} \rangle_{\vec{v}} = 0 \right]$$

Energy

$$m_{\alpha} \left\{ \left\langle v^{2}, C_{\alpha\beta} \right\rangle_{\vec{v}} \right\} = -m_{\beta} \left\{ \left\langle v^{2}, C_{\beta\alpha} \right\rangle_{\vec{v}} \right\} \Longrightarrow \left\langle \vec{v}, \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0$$

2V Rosenbluth-FP collision operator: numerical conservation of energy

The symmetry to enforce is:
$$\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0$$

▶ Due to discretization error:
$$\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = \boxed{\mathcal{O}\left(\Delta_v\right)}$$

➤ We introduce a constraint coefficient such that:

$$\left\langle \vec{v}, \gamma_{\beta\alpha} \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0 \quad \gamma_{\beta\alpha} = \frac{\left\langle \vec{v}, \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}}}{\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} \right\rangle_{\vec{v}}} = 1 + \mathcal{O}\left(\Delta_{v}\right)$$

$$C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_v \cdot \left[\overbrace{\gamma_{\alpha\beta}} \vec{J}_{\alpha\beta,G} - \frac{m_{\alpha}}{m_{\beta}} \vec{J}_{\alpha\beta,H} \right]$$

➤ Discretization is nonlinear, and ensures that, numerically:

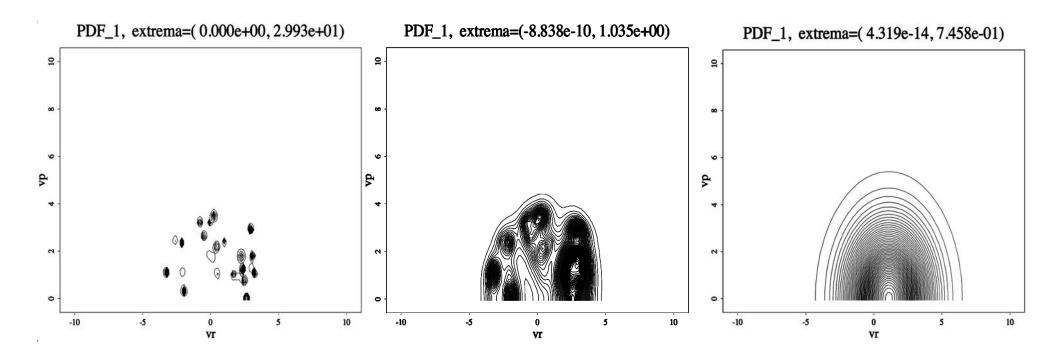
$$m_{\alpha} \left\{ \left\langle v^{2}, C_{\alpha\beta} \right\rangle_{\vec{v}} \right\} = -m_{\beta} \left\{ \left\langle v^{2}, C_{\beta\alpha} \right\rangle_{\vec{v}} \right\}$$

➤ Similarly for momentum. Idea extends to Vlasov equation as well.

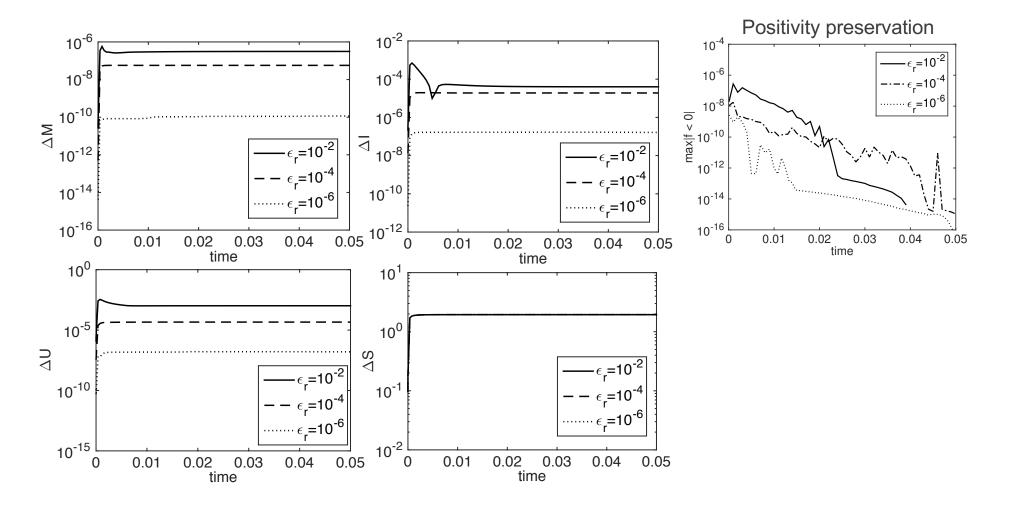
2V Rosenbluth-FP collision operator: numerical preservation of positivity

- ➤RFP collision operator is an advection-(tensor) diffusion operator in velocity space
- **►**Use **SMART** [1] for advection
 - High-order advection when possible
 - Reverts to upwinding otherwise
 - Monotonic, positivity preserving
 - Suitable for implicit timestepping
- **►**Use limited tensor diffusion [2,3] for tensor diffusion component
 - Maximum-principle preserving
 - Compatible with nonlinear iterative solvers
 - 1. Gaskell & Law, 1988
 - 2. Lipnikov et al., 2012
 - 3. Du Toit et al., 2018

Verification: thermalization of initial random distribution



Single-species random distribution: Conservation properties



Moment-based (High-Order/Low-Order) nonlinear solver acceleration strategy

Nested-model solver uses the moment equation to efficiently deal with the integral nonlinearity

➤ Kinetic (HO) equation (microscopic physics):

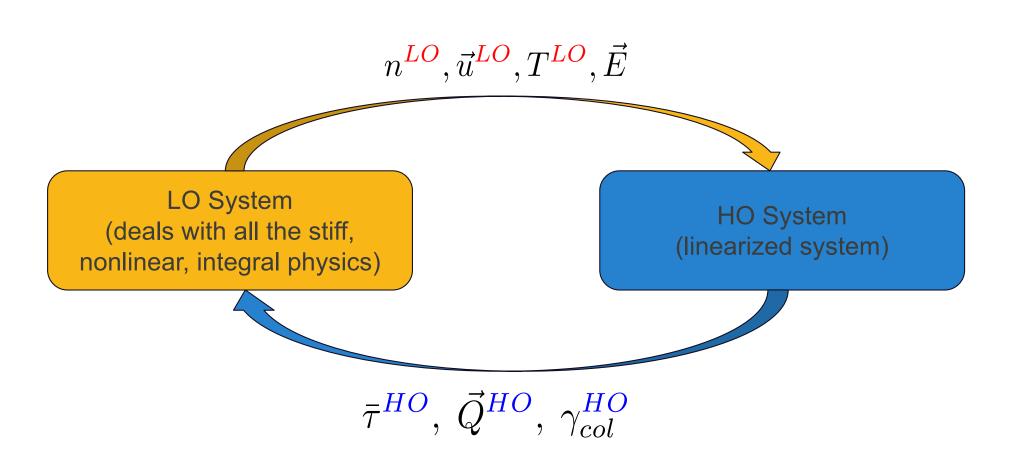
$$VFP_{\alpha} = \partial_{t} f_{\alpha} + \nabla_{x} \cdot (\vec{v} f_{\alpha}) + (q_{\alpha}/m_{\alpha}) \vec{E} \cdot \nabla_{v} f_{\alpha} - \sum_{\beta}^{N} C\left(f_{\beta}, f_{\alpha}, n_{\beta}^{LO}, u_{\beta}^{LO}, T_{\beta}^{LO}\right)$$

➤ Hydrodynamic (LO) equations (macroscopic physics; evolve the Maxwellian collision kernel):

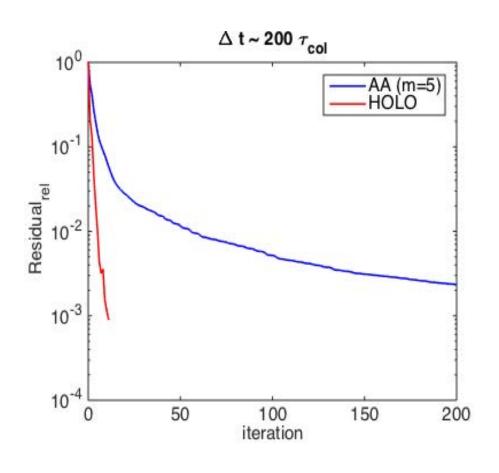
$$\left\langle \begin{bmatrix} 1 \\ \vec{v} \\ \frac{v^2}{2} \end{bmatrix}, VFP_{\alpha} \right\rangle_{v} => \left\{ \begin{array}{c} \partial_{t}n\vec{u}_{\alpha}^{LO} + \nabla_{x} \cdot n\vec{u}_{\alpha}^{LO} \\ \partial_{t}n\vec{u}_{\alpha}^{LO} + \nabla_{x} \cdot \left[n\vec{u}^{LO} \otimes \vec{u}^{LO} + \bar{I}P^{LO} - \bar{\tau}^{HO} \right] - \left(q_{\alpha}/m_{\alpha} \right) n_{\alpha}^{LO} \vec{E} + \sum_{\beta}^{N} \vec{F}_{\alpha\beta}^{HOLO} \\ \partial_{t}U_{\alpha}^{LO} + \nabla_{x} \cdot \left[\vec{u}^{LO} \left(U_{\alpha}^{LO} + P_{\alpha}^{LO} \right) + \vec{Q}_{\alpha}^{HO} - \vec{u}_{\alpha}^{LO} \cdot \bar{\tau}_{\alpha}^{HO} \right] - \left(q_{\alpha}/m_{\alpha} \right) n\vec{u}^{LO} \cdot \vec{E} - \sum_{\beta}^{N} W_{\alpha\beta}^{HOLO} \end{array} \right\}$$

- ➤ These systems are solved coupled using an accelerated Picard iteration (e.g., Anderson Acceleration)
- ➤ HOLO algorithm effectively linearizes the HO component, but without approximation upon nonlinear convergence

LO system accelerates the convergence of the HO system



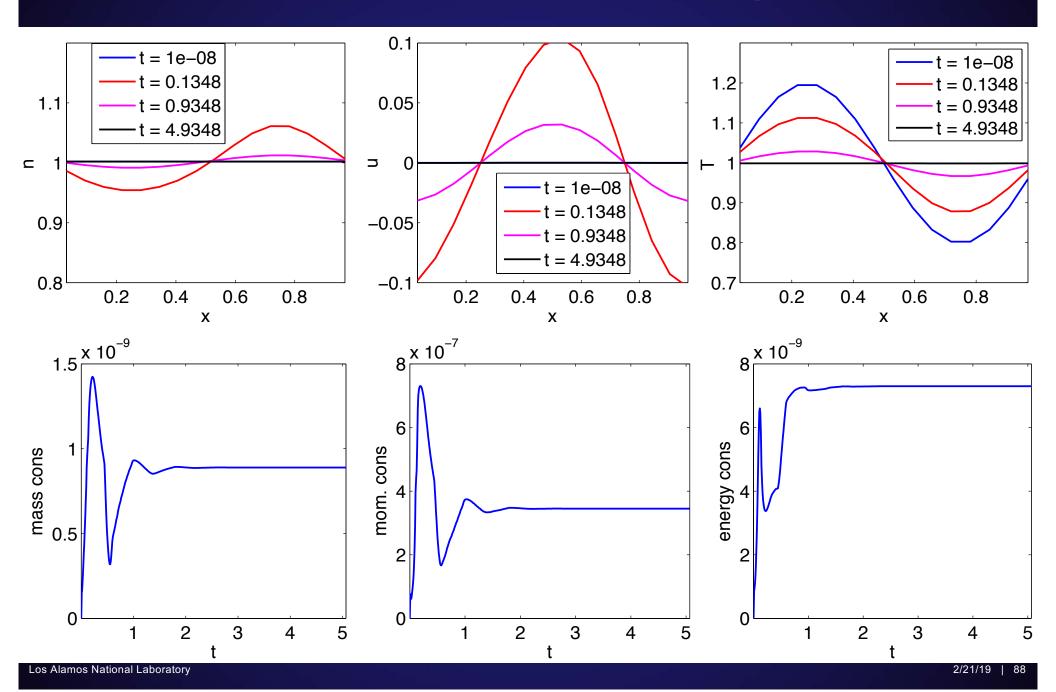
HOLO can efficiently deal with stiff integral nonlinearity



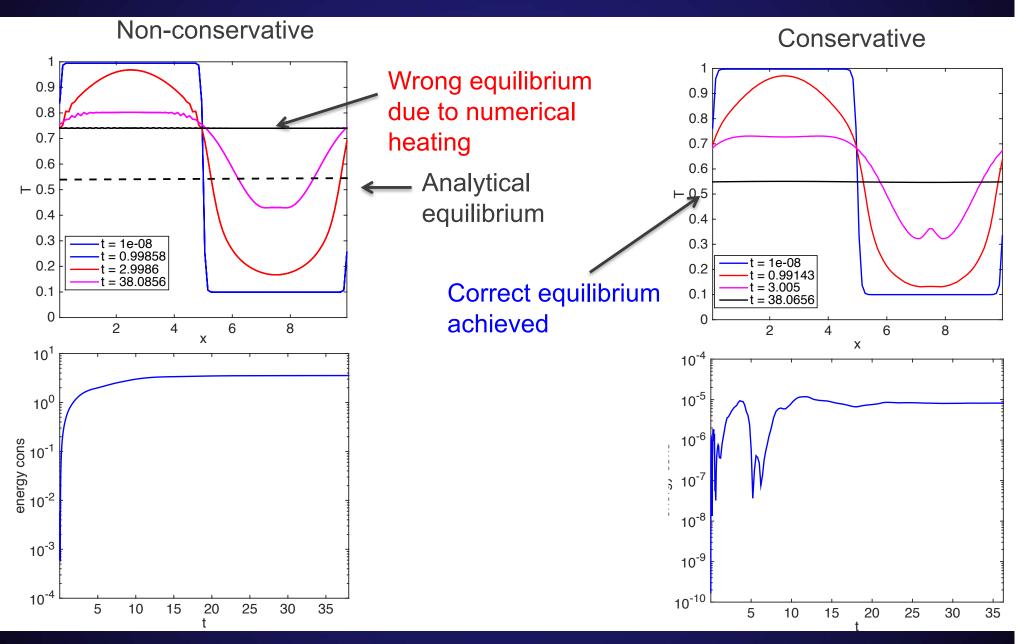
- ➤ HOLO is simply a convergence accelerator (i.e., no additional approximations)
- ➤ A significant acceleration in convergence of nonlinear solver is achieved, without changing the solution!

1D-2V Vlasov-Fokker-Planck equation: Verification and demonstration of long-term accuracy

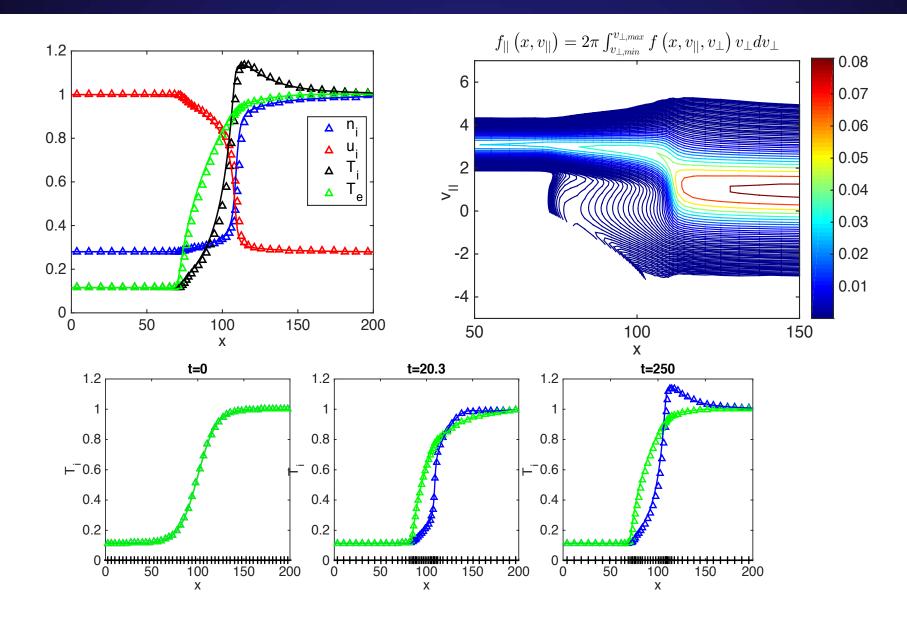
Verification test: Relaxation of sinusoidal profile



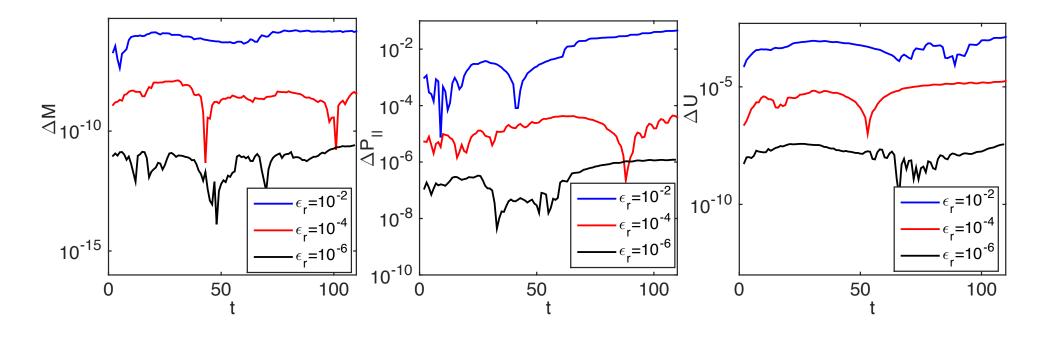
Verification test: Sharp profile relaxation problem



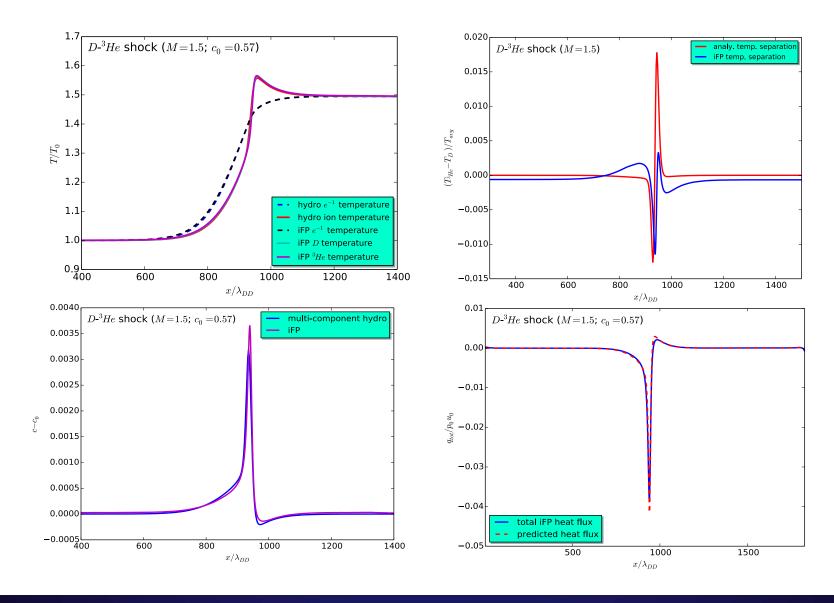
Verification: M=5 Shock (kinetic regime)



Verification: M=5 Shock conservation properties

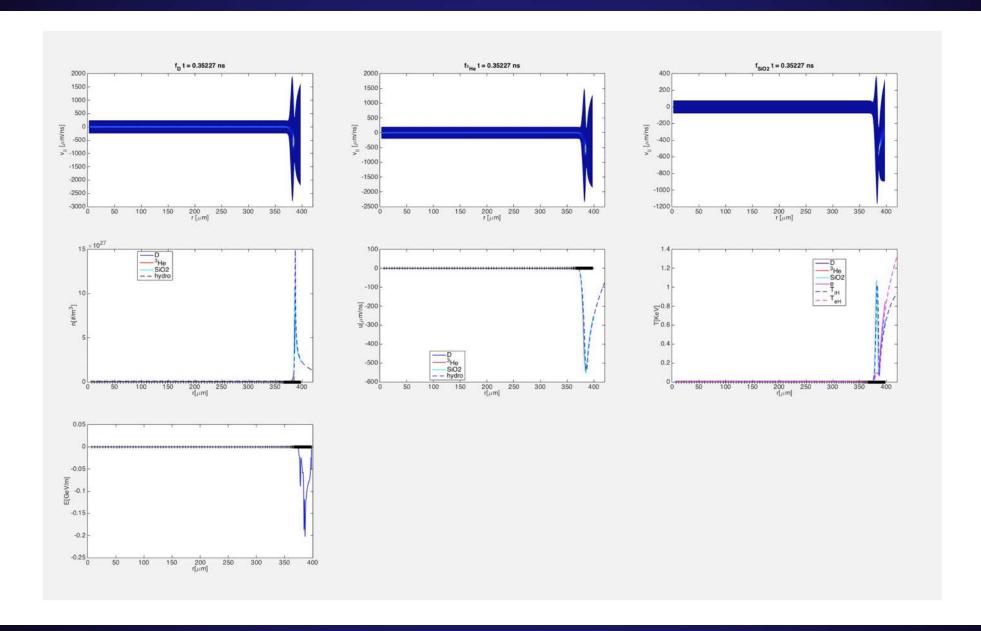


Verification: M=1.5 Shock (fluid regime; HARD)



Application: Exploding pusher ICF capsule implosion

The fuel remains fully kinetic throughout the simulation



Algorithmic savings in computational complexity

$$\frac{N_{v,static}N_{x,static}}{N_{v,adapt}N_{x,adapt}} = \left(\underbrace{\sqrt{\frac{v_{th,max}}{v_{th,min}}}}_{\sim 300} \times \underbrace{\sqrt{\frac{m_{SiO2}}{m_D}}}_{\sim 3}\right)^2 \times \underbrace{\frac{\Delta x_{max}}{\Delta x_{min}}}_{\sim 100} \sim 10^7$$

$$\frac{\langle \Delta t \rangle_{HOLO}}{100 \times \Delta t_{exp}} \sim 10^5$$

Simulation takes <24 hours on 400 cores

Conclusions

- ➤ We have derived manifold-preserving algorithms for kinetic plasma simulation
 - Collisionless (Lagrangian, particle-in-cell)
 - Collisional (Eulerian)
- ➤ Collisionless (PIC): we have solved the 40-year-old algorithmic challenge of developing accurate implicit PIC algorithms
- ➤ Collisional (VFP): we have demonstrated a truly multiscale algorithm that has enabled routine simulation of ICF spherical capsule implosions with a few hundred cores for a couple of days.
- ➤ In both cases:
 - Strict conservation properties have been shown to be critical for long-term accuracy.
 - Significant algorithmic acceleration has been achieved by using nested asymptotic models.
- ➤ We have seen similar benefits in other applications:
 - Rarefied gas dynamics
 - Radiation transport
 - Ocean modeling